

EJERCICIOS TEMA 1: LA ECUACIÓN DE PRIMER ORDEN

Ejercicio 1 (Libro UNED): Determínese el orden y el grado de las siguientes ecuaciones

a)
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - xy = e^x$$

b)
$$y(y')^3 + y^2 = 2xy$$

c)
$$xy''' - x^2y^{iv} + x^4 = 0$$

d)
$$(x^2 - y)dx + (x^3 - 2x + y^2)dy = 0$$

e)
$$(y'')^3 + (y''')^2 - (y')^4 = x$$

f)
$$(sen\theta)y''' - (cos\theta)y' = 2$$

$$\mathbf{g}) \ \frac{dy}{dx} = \frac{2xy}{y-1}$$

h)
$$(1+x^2)\frac{dy}{dx} + 2xy = \sqrt{x}$$

i)
$$x^2y'' + sen(x)y' + y = y^3$$

Ejercicio 2 (Libro UNED): Verifíquese que la función indicada es solución de la correspondiente ecuación

a)
$$(y')^2 + x + 2 = 2$$
 con $y = x + 3$

b)
$$y' = \frac{y}{x} + 1$$
 con $y = x \ln x$

a)
$$(y')^2 + x + 2 = 2$$
 con $y = x + 3$
b) $y' = \frac{y}{x} + 1$ con $y = x \ln x$
c) $x \frac{dy}{dx} = y + x^2 + y^2$ con $y = x \tan x$
d) $\frac{dy}{dx} = 2xy^2$ con $y = \frac{1}{4-x^2}$

d)
$$\frac{dy}{dx} = 2xy^2$$
 con $y = \frac{1}{4-x^2}$

Ejercicio 3 (Libro UNED): Hállese en cada caso la ecuación diferencial de las siguientes familias de curvas:

a)
$$y = e^x + \lambda e^{-2x}$$

b)
$$y = \lambda x ln x$$

c)
$$x^2 - \lambda y^2 = 1$$

d) $y^2 - \lambda x = \lambda^2$

d)
$$y^2 - \lambda x = \lambda^2$$

Ejercicio 4 (Libro UNED): Determínese si el Teorema de existencia y unicidad garantiza o no la existencia de una solución única para los siguientes problemas de Cauchy:

a)
$$y' = \frac{1}{y^2 - 4}$$
 $con y(3) = 0$

b)
$$y' = \sqrt{16 - y^2}$$
 $con \ y(1) = 2$
c) $y' = \sqrt{16 - y^2}$ $con \ y(0) = 4$

c)
$$y' = \sqrt{16 - y^2} \ con \ y(0) = 4$$

d)
$$y' = \sqrt{\frac{y}{x-1}}$$
 $con \ y(5) = 0$
e) $xy' = y + x^2 + y^2 \ con \ y(\pi) = 0$

e)
$$xy' = y + x^2 + y^2 \ con \ y(\pi) = 0$$

f)
$$y' = \frac{y^{\frac{2}{3}}}{x^2 + y^2}$$
 $con y(2) = 0$

Ejercicio 5 (Libro UNED): Determínese una región del plano xy en la que en cada caso, la ecuación diferencial dada tenga solución única:

a)
$$(y^2 - x)y' = y + 2x$$

b)
$$\frac{dy}{dx} = y^{\frac{1}{2}} - x$$

c)
$$y'e^x - x + y = 0$$

b)
$$\frac{dy}{dx} = y^{\frac{1}{2}} - x$$

c) $y'e^{x} - x + y = 0$
d) $y'(x^{2} + y^{2}) = x - y$

e)
$$\left(y^{\frac{1}{3}} - x^2\right) dx - dy = 0$$

f) $y' = \frac{2xy}{y - x^2}$

$$\mathbf{f}) \quad \mathbf{y}' = \frac{2xy}{y - x^2}$$

